

Automated Dobson & Brewer ZS Algorithm

Irina Petropavlovskikh (NOAA/CIRES)

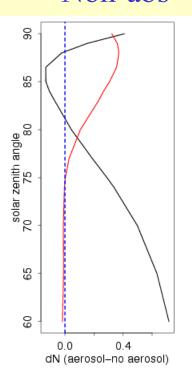
P. K. Bhartia (NASA/GSFC)

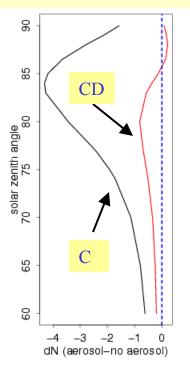
Sources of Noise in C-pair Algorithms

- * Normalization reduces effects of tropospheric aerosols and clouds but only partially.
- Change in TO during observation.
- Sources of instrument noise
 - Stray/scattered light
 - ❖ Measurement noise at large SZAs due to low signal

Proposal: Use Double Pair Retrieval Algorithm without normalization

- * Use AD or CD double pair (or Brewer eqv.) to derive TO and Profile.
 - ❖ Dbl pr N-values are much less sensitive to aerosolsboth trop & stratospheric.
 - *TO is determined from ZS radiances.
- ❖ Calibrate double pair ZS N-values by comparing with DS total O₃ at smaller SZAs (<72°) where ZS is profile insensitive.

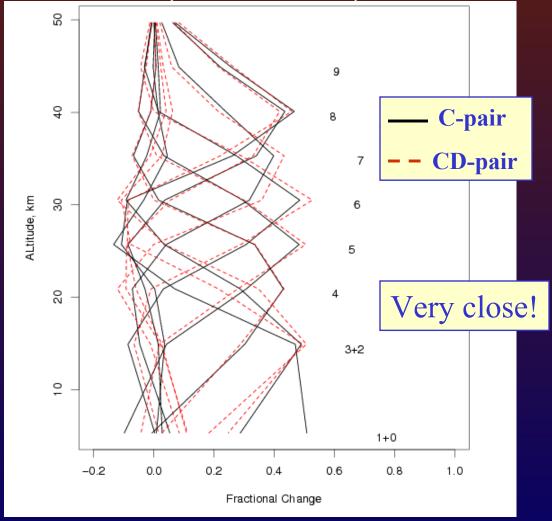

Effect of Aerosols on C and CD

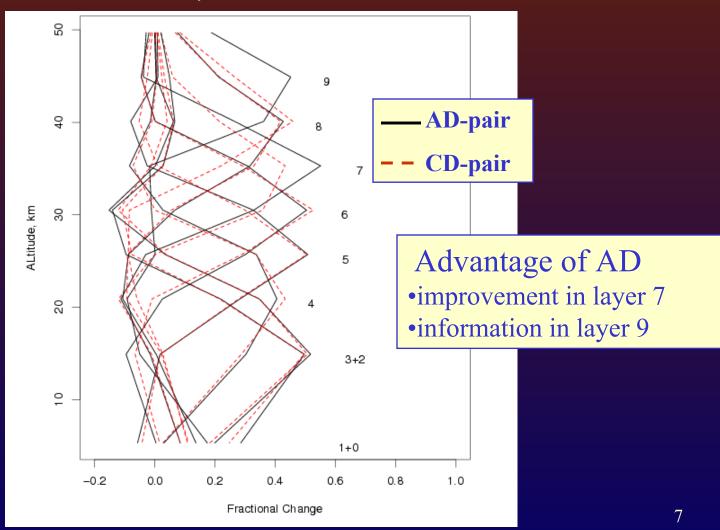

Plots are for τ =0.1 (clean site) At Boulder: $\mu \approx 0.2$; $\sigma \approx$ factor of 2

Stratospheric aerosol

dN (aerosol-no aerosol)

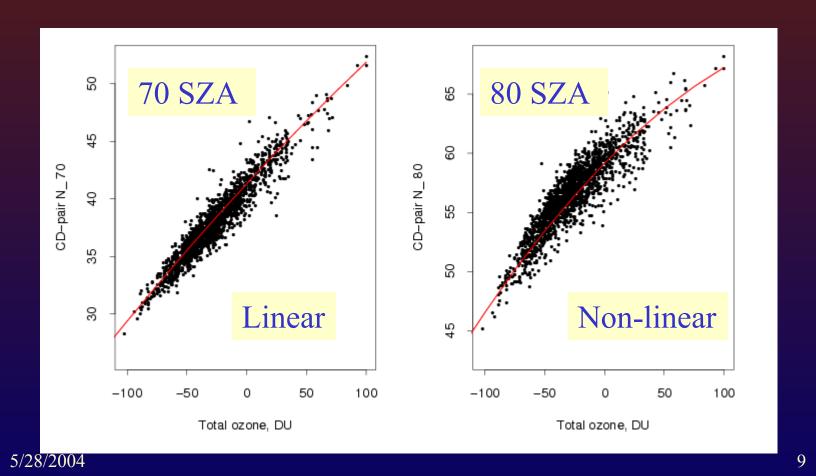
Tropospheric aerosol Non-abs Abs




Aerosol/Cloud effects on RT O₃

- ❖ Normalized C-pair is affected by aerosols- possible reason for increased noise at large SZAs.
- * CD pair removes most of the aerosol interference.
- ❖ CD is more sensitive to clouds because the two pairs are not measured simultaneously.
- Solutions to reduce cloud noise (McElroy):
 - use raw data, rather than interpolated data
 - ❖ for Brewer, compare data from two grating positions at the same wavelengths

CD (no norm) vs. C (norm to 70 SZA)


CD vs AD, no normalization

TO info in ZS measurement

- ❖ Goal: replace the empirical tables currently used by the stations.
- Benefits of using standard radiative-transfer tables:
 - *account for non-linear relationship between N-value and TO at large SZAs
 - ❖ allow correction for profiles using seasonally and zonally varying standard tables.

TO dependence in Boulder CD pair

Correction of ZS TO for profile effects

- * Method 1:
 - ❖ Use two set of tables, select one that gives smaller AD/CD difference.
 - ♦ Works only at moderate SZAs (70°-80°)
- ❖ Method 2:
 - * Estimate TO and profile from Umkehr data.
 - ❖ Better at large SZAs (>80°)

CD/ZS-DS TO retrieval at Boulder

Method 1. Results at nominal SZA

SZA	RMSD %
60	3.0
65	2.8
70	2.7
74	2.7
77	3.0
80	3.7

Method 2 RMSD: 2.5 %

- ❖ Can one use all measurements rather than meas interpolated to 12 fixed SZAs?
 - ❖ Need a cloud detection algorithm
- Can one correct the Brewer N-values for clouds by comparing measurements from two grating positions?

- ❖ One can obtain reliable TO data from ZS measurements, to at least 80° SZA, by using CD data and radiative-transfer tables.
- * CD Umkehr is less sensitive to aerosols than the C-pr Umkehr, plus it can give accurate TO.
- * AD Umkehr can provide layer 9 O_3 and may improve layer 7 O_3 .