

C-pr Umkehr Algorithm History and Current Status

Irina Petropavlovskikh (NOAA/CIRES)
P. K. Bhartia (NASA/Goddard)

Ozone recovery as a result of actions taken under the Montreal Protocol

- * Total ozone record is difficult to use for detection (Shindell, 2001)
 - ozone recovery is related to ozone depleting substances
 - significant contribution from climate change effects
- * Climate effect on stratospheric ozone depletion:
 - increased emission of greenhouse gases warms troposphere (water vapor),
 - * increased content of water vapor in stratosphere (ozone depleting chemicals),
 - cooler temperatures in stratosphere (affects production)
- ♣ Layer 8 (40-45 km) is important for earlier detection of ozone recovery, it has minimal climate change interference
- * There is a latitudinal difference in ozone recovery rates (Shindell, 2001)

Ground-based Zenith-Sky UV Instruments

Traditional Dobson Umkehr

- C-pair
- -SZA: Summer: 60° - 90° , Winter: 70° - 90°
- polarization state unknown, algorithm assumes unpolarized measurements

Automated Dobson Umkehr

- A, C & D pairs
- SZA: Summer: 60°-90°, Winter: 70° -90°
- polarization state same as for traditional Umkehr.

Brewer Umkehr

- 2 sets of 5 wavelengths (set 1: 306, 310, 313, 317, 319 nm, set 2: 317, 319, 323, 326, 329 nm)
- selects parallel polarized light

Characteristics of Umkehr data

- * Long historical record (back to 1957, some even earlier).
- * SZA normalization removes (signal indep.) cal/ETC errors (also sfc albedo and part of trop aerosol effects).
- * Stratospheric aerosol can induce large, but short-lived, errors.

Algorithm History

- UMK1992 (Mateer and DeLuisi, 1992)
 - * TO dependent a priori
 - \bullet RT of the profile as Log O₃ in 16 layers
- * REVUE (Bojkov, 2002)
 - * Updated zonal a priori: seasonally dependent in all layers
 - * Forward model corrections (altitude, temperature)
- UMK2004 (Petropavlovskikh, Bhartia, DeLuisi)
 - Fixed a priori (no TO dependence)
 - * Further improved forward model (updated tables, standard profiles, λ-resolved intensity and convolution over band-pass, temperature and MS correction to N-values, no interpolation)
 - ❖ Updated inverse model (improved error analysis, linear solution)

 5/28/2004

- * A priori is based on total ozone (derived from Dobson direct sun measurements).
 - therefore, inter-annual and long-term changes are driven both by AP and measurements- difficult to isolate.
 - trend in a given layer can be shifted to another layer.

Features of UMK2004 Algorithm

- ❖ A priori doesn't change from year-to-year
 - simplifies interpretation of trends
- ❖ Simple covariance matrix with relatively large diagonal terms and exponential inter-layer correlations.
 - * makes averaging kernels more Gaussian
- Linear Jacobians (dN/dX insterad of DN/dlogX)
 - ❖ Improves PDFs (prob distribution fn.)
- Improved radiative transfer model.
 - * reduces bias

Information Content of Retrieved Profile

* Averaging Kernel (W)

❖ Describes where the (fractional) changes seen in the retrieved profile at a given altitude are coming from

$$\delta \ln x_{\text{retrieved}} = A \delta \ln x_{\text{truth}}$$

- ❖ Ideally, A should be a set of Gaussian functions, producing no vertical shift between impulse and response. (Such shifts indicate that the changes observed at a given altitude represent changes from some other altitude.)
- * Width of A provides vertical resolution as a fn of altitude.

C-pair Umkehr Averaging Kernels

Effect of a priori on ozone trend, Boulder

UMK1992

UMK2004

Effect of the algorithm on trend

Effect of normalization (Boulder, RMSD %)

Layer	RT70	RT77
8+	7.7	8.5
8	8.4	9.4
7	6.9	7.7
6	6.5	6.6
5	7.3	7.1
4	13.6	11.9
2+3	20.2	19.6
0+1	20.4	14.0

Effect of tropospheric aerosols (OD=0.3)

N-value change (aer-clear)

RT O3 change (aer-clear,%)

- ❖ UMK2004 is designed to capture the O₃ trend without algorithmic influences.
- ❖ It does better than UMK1992 in the lower layers.
- ❖ Information in layers 1-3 may be useful for tropospheric ozone assessment in tropics (measurements have to start at 60° SZA)
- ❖ Data collection can start as late as at 77° SZA (degraded information in troposphere) greatly reducing obs time in winter
- ❖ Aerosols may be responsible for the increased noise in the measurements at large SZAs, which can affect retrieved ozone (bias and noise)

Recommendations.

- ❖ Process all available Umkehr data (from traditional Dobsons, Automated Dobsons, Single Brewers and Double Brewers) using the UMK2004 algorithm, make results available thru website
 - ❖ Primary resp: Irina P. (Env. Canada will provide data).
- ❖ Provide data processed from other algorithms, including UMK1992, to Irina P. for comparison
 - * Primary resp: Env Canada (for UMK 1992), committee members encouraged to contribute their data.
- * Based on the comparison decide whether to accept UMK2004 or go with something else.

Backup Slides

Effect of A Priori on Trend

From Inverse Methods for Atmos. Sounding by C. D. Rodgers eqn. 5.18

$$\hat{M} = A \bullet M_{truth} + (I - A) \bullet M_{apriori} + G \bullet (\overline{\varepsilon} - \varepsilon_0),$$

Where,
$$M = \frac{\overline{x} - \overline{x}_0}{\overline{x}_0}$$
 is the mean monthly O_3 anomaly

- **A** (Averaging Kernel) filters out high vert. res. features from the true anomaly.
- Width of A can be reduced by increasing *a priori* cov, but only up to a point, after which G increases rapidly.
- **2**nd term inserts high res features from *a priori* into the retrieved profile, if the *a priori* varies from year-to-year.
- 3rd term represents effect of monthly mean instrument drift on the retrieved profile.